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OLS/MLR Assessment I – Goodness-of-Fit 
 
• Introduction 
• A Quick Comparison of SLR and MLR Assessment – Not much that's new! 
• MLR Goodness-of-Fit:  Adjusted R-squared 
• … and MSE (RMSE) (adding and subtracting RHS variables) 
• Comparing MLR Models I:  Goodness-of-Fit metrics in action 
 
 
Introduction 

When we looked earlier at assessment in the context of SLR models we discussed two types of 
measures of performance, goodness-of-fit and precision/inference metrics.  The goodness-of-fit 
metrics told you something about how well the predicteds from your model fit the actuals, and 
the precision/inference metrics said something about how precisely the slope parameter was 
estimated.  The SLR Assessment discussion focused on goodness-of-fit, as precision/inference 
awaits the topic of statistical inference, and the concepts of hypothesis testing, confidence 
intervals, and statistical significance.   

 

To review: 

 

OLS/SLR Assessment:  Goodness-of-Fit 

• Mean Squared Error (MSE): 
2

SSRMSE
n

=
−

… an average squared residual, sort of… 

• … Root Mean Squared Error (RMSE): RMSE MSE= … sort of an average residual, 
but more like a square root of an average squared residual, sort of… 

• Coefficient of Determination ( )2R : ˆˆ2 2 2
ˆ1 yy

xy yy
yy

SSSR SSER
SST SST S

ρ ρ= − = = = = … proportion 

of the variance of the actuals explained by the predicteds, as well as the correlation 
(squared) between the predicteds and the actuals. 

The MSE and RMSE metrics are not in standardized units, making it difficult to interpret the 
magnitudes.  But 2R , which ranges from zero to one, is standardized to some extent, making it 
perhaps more useful in assessing the performance of the model: 

2R :  20 1R≤ ≤ … closer to one is better….  closer to zero, not so much 

 

  



OLS/MLR Assessment I – Goodness-of-Fit 
 

2 
 

… moving to OLS/MLR models and Goodness-of-Fit metrics 
We continue to turn to these goodness-of-fit assessment metrics when we move to MLR models, 
with the formulas changing by not very much, as you'll see below.  Of the metrics, however, 2R  
proves to be far less useful when assessing performance of MLR models… and so we address 
that shortcoming with a new Goodness-of-Fit metric, 2adjusted R  (sometimes 2adj R , or 2R ). 

 

The shortcoming of 2R  in the MLR 
world:  2R  gives credit to variables for  
just showing up… 

When additional explanatory variables are 
added to a MLR model, SSRs will 
typically decrease, or at worst, stay the 
same… but SSRs can never increase (and 

2R  can never decrease) with additional 
explanatory variables in the model.1   

And so in the context of the 2R  metric, RHS variables get credit for just showing up… 
irrespective of their explanatory power.   

 
Some Intuition:   

Consider a MLR model with min SSRs of 0SSR .  If you have an additional RHS variable, then 
one option in minimizing SSRs is to just keep the coefficient of that new variable equal to zero.  
But when you minimize SSRs with that restriction, you are solving the previous min SSRs 
problem, and so the minimum SSR when restricting the new coefficient to be zero is 0SSR , the 
old SSR.   

So with the additional explanatory variable, you can never do worse in minimizing SSRs than 
0SSR , where you were before, and you can probably do better once you drop the restriction of 

that zero coefficient. 

• If it turns out that the when minimizing SSRs for the new model,  
the new variable does in fact have a coefficient of zero, then SSRs 
will remain at 0SSR … and the new variable has added nothing (no 
explanatory content) to the model.  2R  is unchanged. 

• Alternatively, if the new coefficient is non-zero when minimizing 
SSRs, then SSRs will necessarily have decreased (so long as the 
new variable is not perfectly collinear with the other RHS 
variables in the model).  2R  increases. 

What usually happens:  When new explanatory variables are added to a model their 
coefficients will typically be non-zero and 2R  will typically increase.  So no one should be 
                                                 
1 Assuming no changes to the dependent variable. 
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impressed if 2R  increases when new RHS variables are added to the MLR analysis… that's 
entirely to be expected.  Certainly McKayla Maroney is not impressed!  Here's an application, 
which illustrates the point… and tests your understanding: 

 

MLR Application:  Correlations2 provide a lower bound on MLR 2R . 
Suppose you are considering a MLR box office revenues analysis, with explanatory variables 
wk1, wk2 and wk3.  Here are the correlations of the variables in the model: 
 
. corr rtotgross wk1 wk2 wk3 
 
             | rtotgr~s      wk1      wk2      wk3 
-------------+------------------------------------ 
   rtotgross |   1.0000 
         wk1 |   0.8762   1.0000 
         wk2 |   0.9405   0.9322   1.0000 
         wk3 |   0.9474   0.8387   0.9456   1.0000 
 

Notice that the largest correlation between a RHS variable and rtotgross 
is 0.9474 (wk3).  Then as shown below, the 2R  in the full model must be at least 2.9474 .898= , 
and most likely will be greater.  And so the correlations (squared) (in the table above) provide a 
lower bound on the MLR model 2R .  Or put differently:  you can often get a pretty good sense of 

2R  in a MLR model just by looking at the correlations (squared) amongst the variables. 

If you understand the previous comment about RHS variable getting 2R  credit for just showing 
up, you'll understand why I claim that the 2R  in the full MLR model will have an 2R  of at least  

2.9474 .898= .   

Here's why:  To get to the MLR model, let's start with the SLR model in which rtotgross has 
been regressed on wk3.  I pick wk3 because of the three RHS variables, it has the highest 
correlation with rtotgross.  Since 2 2

xyR ρ=  for SLR models, we know that the 2R  for this SLR 
model will be 2.9474 .898= .  See Model (1) below…. and build to Model (3): 
 

                      (1)             (2)             (3)    
                rtotgross       rtotgross       rtotgross    
------------------------------------------------------------ 
wk3                 7.175***        5.427***        4.778*** 
                 (260.32)        (121.38)         (59.84)    
 
wk1                                 0.735***        0.540*** 
                                  (46.60)         (21.36)    
 
wk2                                                 0.745*** 
                                                   (9.79)    
 
_cons              0.0390          -0.540*         -0.601**  
                   (0.15)         (-2.36)         (-2.64)    
------------------------------------------------------------ 
N                    7730            7730            7730    
R-sq                0.898           0.920           0.921    
SSR             3026710.9       2362741.1       2333803.6    
------------------------------------------------------------ 
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As predicted, 2 'R s  are increasing moving left to right, since the coefficients for the new 
variables are non-zero:  2R  increases from .898 in Model (1) to .920 in Model (2), and to .921 in 
Model (3).  And also as predicted, SSRs are decreasing. 

And so we can use simple pairwise correlations together with the fact that 2R  will never 
decrease when additional RHS variable are added to a model, to place a lower bound on 2R  for 
the final MLR model…  or put differently, the simple correlations alone tell you that the final 
MLR model will have a very high 2R … close to 1. 

 

The following table compares the various Goodness-of-Fit concepts/definitions/formulas in SLR 
and MLR models.  (Note that I assume that there is always a constant term in the SLR and MLR 
models.) 
 
A Quick Comparison of SLR and MLR Assessment – Goodness-of-fit 

 

 SLR MLR 

Sum Squares SST = SSE + SSR SST = SSE + SSR 

R2 (Coefficient of 
Determination) (w/ 
intercept term) 

2 1 SSR SSER
SST SST

= − =  

2 2
ˆxy yyρ ρ= =   

2 1 SSR SSER
SST SST

= − =  

2
ŷyρ=  

 2 ( )
( )

SampleVar predictedR
SampleVar actual

=  2 ( )
( )

SampleVar predictedR
SampleVar actual

=  

Degrees of freedom (dofs) 2dofs n= −   1dofs n k= − −  

MSE 
2

SSR SSRMSE
dofs n

= =
−

 
1

SSR SSRMSE
dofs n k

= =
− −

 

RMSE RMSE MSE=  RMSE MSE=  

Adjusted R2  2 11
1

/ ( 1)1 1
/ ( 1) yy

SSR nR
SST n k

SSR n k MSE
SST n S

−
= −

− −
− −

= − = −
−

 

 
 
So what’s new with MLR?... Not much, really! 
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As you can see, there are a few differences between SLR and MLR models, but not many! 

1. The definitions of SSR, SSE, SST are the same for SLR and MLR models… as is the 
definition of 2R , and the fact that SST = SSE + SSR (since there is a constant term in the 
model). 

2. In the MSE calculation, we now divide by n-k-1, the degrees of freedom (dofs) in the 
MLR model.  This reflects an interest in unbiasedness … to be discussed later.  This is in 
fact consistent with the SLR metric, since there were n-2 dofs in those models. 

3. We have new metric for MLR models, Adjusted R2, discussed in more detail below.  In 
contrast to R2 , and as discussed above, Adjusted R2 will not give new RHS variables 
goodness-of-fit credit merely for just showing up.  New RHS variables have to impress 
(in reducing SSRs by more than some trivial amount) for Adjusted R2 to increase. 

 
 
MLR Goodness-of-fit:  Adjusted R-squared 

As discussed above, when you are adding explanatory variables to a MLR model (and not 
changing the y's or number of observations), SSRs will always decrease (and R-sq will always 
increase) unless the estimated MLR coefficient for the new variable is exactly 0 (or the new 
variable is perfectly collinear with the other RHS variables already in the model).   

So nobody should be impressed if R2 increases when additional explanatory variables are 
brought into the analysis.  You knew that would happen! 

The question should be:  By how much did R2 increase?  If R2 increased a lot, then you should be 
impressed; but if it increased by not so much, then maybe you'll want to 
hold your applause. 

Adjusted R2 is an attempt to adjust the coefficient of determination for this 
shortcoming.  You’ll discover that smallish decreases in SSRs will not 
generate a higher adj R2; but larger decreases will… and what is small or 
large will depend in part on how many additional variables were added to 
the model.. 

Adjusted R-squared, Adj R2, is often (and rather opaquely) defined as: 

2 2 11 (1 )
1

nR R
n k

− = − −  − − 
.   

I don’t know about you, but I find that that formula tells me nothing. 

Since 2 1 SSRR
SST

= − , a more easily interpreted expression for Adj R2 is:   

2 1 11 1
1

SSR n SSR nR
SST n k SST dofs

 − −     = − = −       − −       
,2  

                                                 
2 Recall that we sometimes refer to n-k-1 as the (number of) degrees of freedom (dofs) in the model. 



OLS/MLR Assessment I – Goodness-of-Fit 
 

6 
 

which looks a lot like the definition of R2  (with a 1n
dofs
 −
 
 

adjustment). 

Note that since ( 1) ( 1) 1
( 1)

n n
n k dofs

− −
= >

− −
, 1SSR n SSR

SST dofs SST
 −   >        

 and accordingly, 2 2 1R R< ≤  

for 0k >  , with the difference inversely related to k.   

And so adjusted R2 is always bounded above by 1.3 

 
Interpretation of Adj R2:  It's all about the rates of change of SSRs and dofs. 
We can rewrite the previous expression for Adjusted R2: 

2 ( 1)1 n SSRR
SST dofs

 −
= −  

 
.   

As you add explanatory variables to the model, only the terms in the square brackets (SSR and 
dofs) are changing, and both ( )SSRs and dofs  are typically declining.  And so whether 2R  
increases or decreases will depend on the relative rates of change of SSRs and dofs: 

• If the decline in SSRs is faster than the decline in dofs, then SSR
dofs
 
 
 

 will decline and 2R  will 

increase with the additional explanatory variables. 

• But if the decline in SSRs is slower than the decline in dofs, then SSR
dofs
 
 
 

 will increase , and 

2R  will decrease.   

So for Adjusted R2 to increase, it must be the case that SSRs are dropping faster than dofs. 
 
… and MSE (RMSE) (adding and subtracting RHS variables) 

Since 2 / ( 1)1
/ ( 1)

SSR n kR
SST n

− −
= −

−
1

yy

MSE
S

= − , adjusted R2 and MSE will always move in opposite 

directions when yyS is fixed.  So if you are adding (or subtracting) RHS variables to (or from) a 

MLR model (and not impacting yyS ), you should expect to see 2R  and MSE moving in exactly 
opposite directions.   

Accordingly, the two goodness-of-fit metrics (adjusted R2 and MSE/RMSE)  are effectively 
redundant in the sense that knowing the movements patterns of one tells you the movements of 
the other.   

                                                 
3 Adjusted R2 can be negative, though that rarely happens in practice..  If you see that, you have a really really really 
bad model!  Time to find a new profession! 
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An important difference however is that while we don’t necessarily have a good sense of when 
MSEs (RMSEs) are small or large, we do know that 2 1R ≤ , and so we typically have an easier 
time evaluating magnitudes of 2R . 

Note however that since 2R  and 2R  do not necessarily move in the same direction, MSEs and 
2R  will not necessarily move in opposite directions.  That was not the case for SLR models. 

 
Comparing MLR Models I:  Goodness-of-Fit metrics in action 

To illustrate Goodness-of-Fit metrics in action, here’s an example using the bodyfat dataset.   

In Model (1), the Brozek measure of bodyfat had been regressed on hgt and wgt. 
 
. esttab, r2 ar2 scalar (rmse) compress 
 
-------------------------------------------------------------- 
                 (1)          (2)          (3)          (4)    
              Brozek       Brozek       Brozek       Brozek    
-------------------------------------------------------------- 
hgt           -0.650***    -0.118       -0.131       -0.138    
             (-6.29)      (-1.43)      (-1.51)      (-1.55)    
 
wgt            0.187***    -0.120***    -0.108**     -0.100*   
             (14.48)      (-5.41)      (-3.18)      (-2.52)    
 
abd                         0.880***     0.883***     0.898*** 
                          (15.19)      (15.13)      (12.62)    
 
hip                                    -0.0564      -0.0723    
                                       (-0.49)      (-0.58)    
 
chest                                               -0.0348    
                                                    (-0.38)    
 
_cons          31.16***    -32.66***    -28.64**     -25.86*   
              (4.51)      (-5.01)      (-2.71)      (-2.01)    
-------------------------------------------------------------- 
N                252          252          252          252    
R-sq          0.4614       0.7210       0.7213       0.7215    
adj. R-sq     0.4571       0.7177       0.7168       0.7158    
rmse          5.7109       4.1184       4.1248       4.1320    
-------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

Note the esttab options:  r2 ( )2R , ar2 ( )2R , and rmse ( )RMSE . 

• In Model (2), abd has been added to Model (1), and R-sq and adj. R-sq both increase, while 
RMSE declines.   

• In Model (3) hip has been added in, with R-sq continuing to increase as it almost always will.  
Now, however, adj. R-sq declines and RMSE increases.  As always, adj R-sq and RMSE are 
moving in opposite directions.   

• And in going to Model (4), with chest added to the model, R-sq continues to (slightly) 
increase, while adj R-sq again declines and RMSE again increases. 
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Recall that with SLR models, we could use R-sq to compare the 
performance of different models having the same dependent variable.  In 
the MLR world, we often use 2adj R 's to compare models, so long as 
the dependent variables are the same… though I'd be the last to suggest 
that you should only look at 2adj R . 

Applying this criterion to the previous set of four MLR models, Model (2) is the best performer 
since it has the highest adj R-sq and the lowest RMSE.  But all of the Models tell you 
something… so don't ignore the others, just because their performance stats aren't as impressive! 

 

Art v. Science 
Comparing the performance of MLR models is as much art as science  … and in truth, we 
typically look at a number of different aspects/properties of the model.  But certainly adj R-sq 
and RMSE are in the conversation.   

We'll return to this topic later, and focus on the different criteria at play in assessing the 
performance of  the three types of econometrics 
models discussed in the Introduction: 

• Forecasting models (less is more; focus on 
out-of-sample forecasting, and don’t over-fit 
the data) 

• Behavioral models (parsimony preferred; 
the challenging art form) 

• Favorite coefficient models (more is more; 
focus on the favorite coefficient… and don’t worry about the other aspects of the 
model… other than making sure that you really have included every possible relevant 
explanatory variable, and accordingly that you have minimized the possibility of omitted 
variable impact/bias) 

 


